Printer Friendly Email Syllabus |

##
EC 315 Quantitative Research Methods

Torres, David

**Mission Statement:**The mission of Park University, an entrepreneurial institution of learning, is to provide access to academic excellence, which will prepare learners to think critically, communicate effectively and engage in lifelong learning while serving a global community.

**Vision Statement:**Park University will be a renowned international leader in providing innovative educational opportunities for learners within the global society.

| EC 315 Quantitative Research Methods |

| S2B 2007 BL |

| Torres, David |

| Economics Instructor |

| BBA in Economics |

| 915-594-5654 |

| |

| TTR |

| 7:40 - 10:10 PM |

| MA120 & CS140 |

| 3 |

**Textbook:**

STATISTICAL TECHNIQUES in Business and Economics, Lind, Marachal and Wathen, McGraw-Hill, Irwin 13th edition

"Guide to Quantitative Analysis" by Pete Soule

**Additional Resources:**

Not required but a Statistical / Scientific calculator will be helpful! Students are not allowed to use any multi-functional electronic devices (cell phones, ect) on the final.

McAfee Memorial Library - Online information, links, electronic databases and the Online catalog. Contact the library for further assistance via email or at 800-270-4347.

Career Counseling - The Career Development Center (CDC) provides services for all stages of career development. The mission of the CDC is to provide the career planning tools to ensure a lifetime of career success.

Park Helpdesk - If you have forgotten your OPEN ID or Password, or need assistance with your PirateMail account, please email helpdesk@park.edu or call 800-927-3024

Resources for Current Students - A great place to look for all kinds of information http://www.park.edu/Current/.

**Course Description:**

This intermediate level statistics course covers the fundamentals of conducting quantitative research for the social and administrative sciences. The course is organized around a research project on quantitative analysis of data. The research paper reflects the requirements of the core assessment for the course. PREREQUISITES: MA 120 and CS 140. 3:0:3

**Learning Outcomes:**

**Core Learning Outcomes**

- Write a proposal for a research project on an original multiple regression model with four independent variables.
- Gather data and research articles related to the multiple regression model.
- Use a statistical software package to regress the original model.
- Write a formal research report that defines and analyzes the evaluative information provided by a statistical software package, including the adjusted R-square, F statistic, t statistics, and correlation coefficients for multicollinearity.
- Do hypothesis testing and determine confidence intervals using the t statistic. Also, conduct hypothesis testing using the F and Chi-square statistics.

**Core Assessment:**

**DESCRIPTION OF CORE ASSESSMENT FOR EC 315:**

All

**Research Topic Proposal**

As preparation for the final research paper, formulate an original theory about the correlation between *four* measurable independent variables (causes) and one measurable dependent variable (the effect). The topic proposal should include the following four items which serve as the foundation for the final research paper after instructor feedback is given.

**1) Purpose Statement **

In one paragraph, state the correlation and identify the primary independent variable.

State the correlation:

*“The dependent variable _______ is determined by independent variables ________, _________, ________, and ________.”*

Identify and defend the “primary” independent variable, or the variable believed to have the strongest impact on the dependent variable:

*“The most important independent variable in this relationship is ________ because _________.”*

**2) Definition of Variables **

For each variable, write a single definition paragraph (five paragraphs total). Paragraphs should be in this order: dependent variable, primary independent variable, and remaining three independent variables.

In addition to defining the independent variables, defend *why* each determines the dependent variable.

For the primary independent variable, at least *two research sources* that discuss the variable also must be cited. These sources need not be technical documents but should contain evidence to justify the relationship between the primary independent variable and the dependent variable. List these sources on the Works Cited (reference) page. Citations from encyclopedias, abstracts, or non-governmental websites are not acceptable research sources.

**3) Data Description**

For each of the five variables, at least 30 observations of cross-sectional data must be obtained. Thus for the final research paper, a data matrix that is at least 30 rows by five columns must be presented.

In one paragraph, identify the data sources and describe the data (i.e., which government agencies supply the data, which methods are used to compile them, when they were collected, etc.). Attach a Xerox copy of the original data tables from which the data will be compiled after the proposal is reviewed and approved by the instructor.

**4) Works Cited Page**

The final page of the proposal should be a Works Cited page listing the two research sources for the primary independent variable and the data sources, with a separate citation for each table of data, including specific table numbers for each of the five sources. The appropriate format should be employed (see below).

__Purpose Statement and Model__

1) In the introductory paragraph, state why the dependent variable has been chosen for analysis. Then make a general statement about the model:

“*The dependent variable _______ is determined by variables ________, ________, ________, and ________.”*

2) In the second paragraph, identify the primary independent variable and defend why it is important.

*“The most important variable in this analysis is ________ because _________.” *In this paragraph, cite and discuss the two research sources that support the thesis, i.e., the model.

3) Write the general form of the model, with the primary independent variable as X_{1}:

*The model is:*

Y =

*Where*

Y: brief definition of Y

X_{1}: brief definition of X_{1 }[etc. for each variable]

__Definition of Variables__

4) Define and defend all variables, including the dependent variable, in a single paragraph for each variable. Also, state the expectations for each independent variable. These paragraphs should be in numerical order, i.e., dependent variable, X_{1}, then X_{2}, etc.

In each paragraph, the following should be addressed:

< How is the variable defined in the data source?

< Which unit of measurement is used?

< For the independent variables: *why* does the variable determine Y?

< What sign is expected for the independent variable's coefficient, positive or negative? Why?

__Data Description__5) In one paragraph, describe the data and identify the data sources.

< From which general sources and from which specific tables are the data taken? (Citing a website is not acceptable.)

< Which year or years were the data collected?

< Are there any data limitations?

__Presentation and Interpretation of Results__

6) Write the estimated (prediction) equation:

*The results are:*

7) Identify and interpret the adjusted R^{2 }(one paragraph):

< Define “adjusted R^{2}.”

< What does the value of the adjusted R^{2} reveal about the model?

< If the adjusted R^{2} is low, how has the choice of independent variables created this result?

8) Identify and interpret the F test (one paragraph):

< Using the p-value approach, is the null hypothesis for the F test rejected or not rejected? Why or why not?

< Interpret the implications of these findings for the model.

9) Identify and interpret the t tests for each of the coefficients (one separate paragraph for each variable, in numerical order):

< Are the signs of the coefficients as expected? If not, why not?

< For each of the coefficients, interpret the numerical value.

< Using the p-value approach, is the null hypothesis for the t test rejected or not rejected for each coefficient? Why or why not?

< Interpret the implications of these findings for the variable.

< Identify the variable with the greatest significance.

10) Analyze multicollinearity of the independent variables (one paragraph):

< Generate the correlation matrix.

< Define multicollinearity.

< Are any of the independent variables highly correlated with each other? If so, identify the variables and explain why they are correlated.

< State the implications of multicollinearity (if found) for the model.

11) Other (not required):

< If any additional techniques for improving results are employed, discuss these at the end of the paper.

**Works Cited Page**

12) Use the proper format to list the works cited under two headings:

__ Research: two sources__

__Data__: a separate citation for each of the five variables

Link to Class Rubric**Class Assessment:**

There will be two exams, homework and a written research project in this course. The research paper is the core assessment for the course. The comprehensive final is not a take home exam. The comprehensive final is not open book or open notes.

**Grading:**

Homework 10% 100 points

Midterm test 30% 100 points

Final 30% 100 points

Research Paper 30% 100 points

TOTAL 400 points

Grades will be determined as follows:

A 90% to 100% 360 to 400 points

B 80% to <90% 320 to <360 points

C 70% to <80% 280 to <320 points

D 60% to <70% 240 to <280 points

F <60% <240 points

All final exams will be comprehensive and will be closed book and closed notes. If calculators are allowed, they will not be multifunctional electronic devices that include features such as: phones, cameras, instant messaging, pagers, and so forth. Electronic Computers will not be allowed on final exams unless an exception is made by the Associate Dean.

**Late Submission of Course Materials:**

Homework will be accepted late, the research project CAN NOT AND WILL NOT be accepted late!

**Classroom Rules of Conduct:**

Students are encouraged to read the current

**Course Topic/Dates/Assignments:**

Week 1: Class introduction and Admin Probability Distributions, Chapter 7 Estimation and Confidence Intervals Chapter 9

Week 2: Intro to Research Reqmts Central Limit Theorem Chap 8 pp 258 - 269 Hypothesis testing Chap 10 Intro to Regression Chap 13 pp 429 - 444 Homework Problem Set #1 due

Week 3: Standard Error Chap 13 pp 446 - 459 Two Sample Test of Hypothesis Large Sample Chap 11 pp 356 - 363 Homework Problem Set #2 Due Review Progress of Research Projects

Week 4: Two Sample Test of Hypothesis Small Sample Chapter 11 pp 356 - 366 Review Progress of Research Projects Midterm Test

Week 5: Review results of Midterm test ANOVA and F Distributions Chapter 12 Multiple Regression Chapter 14 Problem Set # 3 Due Review Progress of Research Project

Week 6: Chi Sqr applications, Chap. 15 Times Series and Forecasting, Chap. 19 Problesm Set # 4 Due

Week 7: Time Series and Forecasting Chap. 19 Research Projects Due

Week 8: Final Test

**Academic Honesty:**

Academic integrity is the foundation of the academic community. Because each student has the primary responsibility for being academically honest, students are advised to read and understand all sections of this policy relating to standards of conduct and academic life. Park University 2006-2007 Undergraduate Catalog Page 87-89

**Plagiarism:**

Plagiarism involves the use of quotations without quotation marks, the use of quotations without indication of the source, the use of another's idea without acknowledging the source, the submission of a paper, laboratory report, project, or class assignment (any portion of such) prepared by another person, or incorrect paraphrasing. Park University 2006-2007 Undergraduate Catalog Page 87

**Attendance Policy:**

Instructors are required to maintain attendance records and to report absences via the online attendance reporting system.

- The instructor may excuse absences for valid reasons, but missed work must be made up within the semester/term of enrollment.
- Work missed through unexcused absences must also be made up within the semester/term of enrollment, but unexcused absences may carry further penalties.
- In the event of two consecutive weeks of unexcused absences in a semester/term of enrollment, the student will be administratively withdrawn, resulting in a grade of "W".
- A "Contract for Incomplete" will not be issued to a student who has unexcused or excessive absences recorded for a course.
- Students receiving Military Tuition Assistance or Veterans Administration educational benefits must not exceed three unexcused absences in the semester/term of enrollment. Excessive absences will be reported to the appropriate agency and may result in a monetary penalty to the student.
- Report of a "F" grade (attendance or academic) resulting from excessive absence for those students who are receiving financial assistance from agencies not mentioned in item 5 above will be reported to the appropriate agency.

Park University 2006-2007 Undergraduate Catalog Page 89-90

**Disability Guidelines:**

Park University is committed to meeting the needs of all students that meet the criteria for special assistance. These guidelines are designed to supply directions to students concerning the information necessary to accomplish this goal. It is Park University's policy to comply fully with federal and state law, including Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, regarding students with disabilities. In the case of any inconsistency between these guidelines and federal and/or state law, the provisions of the law will apply. Additional information concerning Park University's policies and procedures related to disability can be found on the Park University web page: http://www.park.edu/disability .

Competency | Exceeds Expectation (3) | Meets Expectation (2) | Does Not Meet Expectation (1) | No Evidence (0) |

Evaluation Outcomes 1 | Four independent variables are appropriately chosen and are measurable. | Two to three independent variables are appropriately chosen and are measurable. | One independent variable is appropriately chosen and is measurable. | No independent variable is appropriately chosen and no variable is measurable. |

Synthesis Outcomes 2 | Data for five variables are appropriate and documented; two research articles are cited. | Data for two to four variables are appropriate and documented; two research articles are cited. | Data for one variable are appropriate and documented; OR less than two research articles are cited. | No data are appropriate or documented; no research articles are cited. |

Analysis Outcomes 4 | All of the following statistics are perfectly analyzed: R2, F statistic, four t statistics, and correlation coefficients for multicollinearity | Three to seven of the following statistics are perfectly analyzed: R2, F statistic, four t statistics, and correlation coefficients for multicollinearity | Less than three of the following statistics are perfectly analyzed: R2, F statistic, four t statistics, and correlation coefficients for multicollinearity | None of the following statistics is analyzed: R2, F statistic, four t statistics, and correlation coefficients for multicollinearity |

Application Outcomes 3 | All statistical results are generated with no errors. | All statistical results are generated with only one error. | All statistical results are generated with two or more errors. | Statistical results are not generated. |

Content of Communication Outcomes 4 | Works Cited page is properly formatted and complete. | Works Cited page has one to two errors. | Works Cited page has three or more errors. | Works Cited page is not present. |

Technical Skill in Communicating Outcomes 4 | All of the following statistics are perfectly defined: R2, F statistic, t statistic, and correlation coefficients/multicollinearity | Two to three of the following statistics are correctly defined: R2, F statistic, t statistic, and correlation coefficients/multicollinearity | One of the following statistics is correctly defined: R2, F statistic, t statistic, and correlation coefficients/multicollinearity | None of the following statistics is defined: R2, F statistic, t statistic, and correlation coefficients/multicollinearity |

First Disciplinary Competency Outcomes 4 | The p-value approach to hypothesis testing is perfectly defined and analyzed for all four t-tests. | The p-value approach to hypothesis testing is correctly defined and analyzed for two to three t-tests. | The p-value approach to hypothesis testing is correctly defined and analyzed for one t-test. | The p-value approach to hypothesis testing is not defined or analyzed for any t-test. |

Second Disciplinary Competency Outcomes 4 | The p-value approach to hypothesis testing is perfectly defined and analyzed for the F-test. | The p-value approach to hypothesis testing is defined and analyzed with at least one error for the F-test. | The p-value approach to hypothesis testing is not defined and analyzed with at least one error for the F-test. | The p-value approach to hypothesis testing is neither defined nor analyzed for the F-test. |

**Copyright:**

**Last Updated:***2/13/2007 9:43:11 AM*