Syllabus Entrance
Printer Friendly
Email Syllabus
Education Major Version

MA 210 Calculus and Analytic Geom I
Ottum, Joseph A.


Mission Statement: The mission of Park University, an entrepreneurial institution of learning, is to provide access to academic excellence, which will prepare learners to think critically, communicate effectively and engage in lifelong learning while serving a global community.

Vision Statement: Park University will be a renowned international leader in providing innovative educational opportunities for learners within the global society.

Course

MA 210 Calculus and Analytic Geom I

Semester

F2AA 2007 LC

Faculty

Ottum, Joseph A.

E-Mail

Joseph.Ottum@park.edu

Semester Dates

Oct 22 - Dec 16

Class Days

-M-W---

Class Time

4:45 - 7:25 PM

Prerequisites

MA131 and MA141 or MA150 or equivalents.

Credit Hours

3


Textbook:

Schaum's Outline of Calculus, Frank Ayres, Elliot Mendelson, Mc Graw Hill, June 28, 199, ISBN 0070419736/9780070419735
 

Additional Resources:
TI-89 or equivalent calculator recommended

McAfee Memorial Library - Online information, links, electronic databases and the Online catalog. Contact the library for further assistance via email or at 800-270-4347.
Career Counseling - The Career Development Center (CDC) provides services for all stages of career development.  The mission of the CDC is to provide the career planning tools to ensure a lifetime of career success.
Park Helpdesk - If you have forgotten your OPEN ID or Password, or need assistance with your PirateMail account, please email helpdesk@park.edu or call 800-927-3024
Resources for Current Students - A great place to look for all kinds of information http://www.park.edu/Current/.


Course Description:
The study of the calculus begins with an examination of the real number system and the Cartesian plane. Additional topics to be considered include functions and their graphs, limits and differentiation techniques, the mean value theorem, applications of the derivative, indefinite integration, the trigonometric functions. 3:0:3 Prerequisite: MA131 and MA141 or MA150 or equivalents.

Educational Philosophy:
The facilitator’s educational philosophy is one of interactiveness based on lectures, readings, quizzes, dialogues, examinations, internet, videos, web sites and writings. The facilitator will engage each learner in what is referred to as disputatious learning to encourage the lively exploration of ideas, issues and contradictions.

Learning Outcomes:
  Core Learning Outcomes

  1. Define a mathematical limit and compute various limits
  2. Define a continuous function
  3. Recognize where continuity occurs and its consequences
  4. Define the derivative in terms of a limit of a difference quotient and recognize its geometric applications and properties
  5. Differentiate polynomials, trigonometric, and exponential functions
  6. Utilize first and second derivatives to graph functions
  7. Apply derivatives to optimization and related rates problems
  8. Apply the power rule, the sum rule, the difference rule, the constant factor rule, the product rule, the quotient rule, the chain rule


Core Assessment:




















Core Assessment for MA 210 Calculus and Analytic Geometry I


1. Define a mathematical limit and compute various limits.


2. Define a continuous function.


3. Recognize where continuity occurs and its consequences.


4. Define the derivative in terms of a limit of a difference quotient and recognize its geometric applications and properties


5. Differentiate polynomials, trigonometric functions, and exponential functions.


6. Utilize first and second derivatives to graph functions.


7. Apply derivatives to optimization and related rates problems


8. Apply the power rule, the sum rule, the difference rule, the constant factor rule, the product rule, the quotient rule, and the chain rule

Link to Class Rubric

Class Assessment:
Two Tests,Participation/Homework Notebook,Final Examination

Grading:
Two Tests 25% of final grade each Participation/Homework Notebook 25% of final grade Final Examination 25% of final grade Gades A:90-100 B:85-89 C:80-84 D:70-79

Late Submission of Course Materials:
Assignments should be turned in on the specified due date.

Classroom Rules of Conduct:
Students are expected to participate fully in class learning activities.  Phones and beepers are to be placed on “vibrate” or turned off.  Students are required to exercise courteous behavior between themselves and with the instructor.

Course Topic/Dates/Assignments:

1 M 10/22 Absolute Value. Inequalities, Equations and Their Graphs
2 W 10/24 Functions, Limits
3 M 10/29 Continunity,The Derivative
4 W 10/31 Rules for Differentiating Functions, Implicit Differentiation.
5 M 11/5 Test 1
6 W 11/7 Tangent and Normal Lines, Law of the Mean
7 M 11/12 Increasing and Decreasing Functions. Maximum and Minimum Values
8 W 11/14 Curve Sketching, Concavity
9 M 11/19 Symmetry, Review of Trigonometry
10 W 11/21 Test 2
11 M 11/26 Differentiation of Trigonometric Functions, Inverse Trigonometric Functions.
12 W 11/28 Rectilinear and Circular Motion, Related Rates.
13 M 12/3 Differentials. Newton's Method, Antiderivatives.
14 W 12/5 The Definite Integral. Area Under a Curve, The Fundamental Theorem of Calculus.
15 M 12/10 Review
16 W 12/12 Final

Academic Honesty:
Academic integrity is the foundation of the academic community. Because each student has the primary responsibility for being academically honest, students are advised to read and understand all sections of this policy relating to standards of conduct and academic life.   Park University 2007-2008 Undergraduate Catalog Page 85-86

Plagiarism:
Plagiarism involves the use of quotations without quotation marks, the use of quotations without indication of the source, the use of another's idea without acknowledging the source, the submission of a paper, laboratory report, project, or class assignment (any portion of such) prepared by another person, or incorrect paraphrasing. Park University 2007-2008 Undergraduate Catalog Page 85

Attendance Policy:
Instructors are required to maintain attendance records and to report absences via the online attendance reporting system.

  1. The instructor may excuse absences for valid reasons, but missed work must be made up within the semester/term of enrollment.
  2. Work missed through unexcused absences must also be made up within the semester/term of enrollment.
  3. Work missed through unexcused absences must also be made up within the semester/term of enrollment, but unexcused absences may carry further penalties.
  4. In the event of two consecutive weeks of unexcused absences in a semester/term of enrollment, the student will be administratively withdrawn, resulting in a grade of "F".
  5. A "Contract for Incomplete" will not be issued to a student who has unexcused or excessive absences recorded for a course.
  6. Students receiving Military Tuition Assistance or Veterans Administration educational benefits must not exceed three unexcused absences in the semester/term of enrollment. Excessive absences will be reported to the appropriate agency and may result in a monetary penalty to the student.
  7. Report of a "F" grade (attendance or academic) resulting from excessive absence for those students who are receiving financial assistance from agencies not mentioned in item 5 above will be reported to the appropriate agency.

Park University 2007-2008 Undergraduate Catalog Page 87-88

Disability Guidelines:
Park University is committed to meeting the needs of all students that meet the criteria for special assistance. These guidelines are designed to supply directions to students concerning the information necessary to accomplish this goal. It is Park University's policy to comply fully with federal and state law, including Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, regarding students with disabilities. In the case of any inconsistency between these guidelines and federal and/or state law, the provisions of the law will apply. Additional information concerning Park University's policies and procedures related to disability can be found on the Park University web page: http://www.park.edu/disability .



Rubric

CompetencyExceeds Expectation (3)Meets Expectation (2)Does Not Meet Expectation (1)No Evidence (0)
Evaluation                                                                                                                                                                                                                                                 
Outcomes
1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
Can solve 5 out of 5 problems involving limits Can solve 4 out of 5 problems involving limits Can solve 3 or fewer out of 5 problems involving limits Makes no attempt to solve any limit problem 
Synthesis                                                                                                                                                                                                                                                  
Outcomes
4, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Can find the derivative of 5 out of 5 functions Can find the derivative of 4 out of 5 functions Can find the derivative of 3 or fewer  out of 5 functions Makes no attempt to solve any derivative problem 
Analysis                                                                                                                                                                                                                                                   
Outcomes
2, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Can solve 5 out of 5 problems correctly concerning continuity Can solve 4 out of 5 problems correctly concerning continuity Can solve 3 or fewer out of  5 problems correctly concerning continuity Makes no attempt to solve any problem concerning continuity 
Application                                                                                                                                                                                                                                                
Outcomes
5, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Apply the power rule, the sum rule, the constant factor rule, the product rule, and the chain rule to 5 out of 5 problems correctly Apply the power rule, the sum rule, the constant factor rule, the product rule, and the chain rule to 4 out of 5 problems correctly Apply the power rule, the sum rule, the constant factor rule, the product rule, and the chain rule to 3 or fewer out of 5 problems correctly Makes no attempt to provide any application 
Content of Communication                                                                                                                                                                                                                                   
Outcomes
1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Can define what a limit is with perfect  accuracy. Can define what a continuous function is with perfect accuracy Can define what a limit is with substantially complete accuracy.                                             Can define what a continuous function is with substantially complete accuracy Can define what a limit is with incomplete  accuracy.                                              Can define what a continuous function is   with incomplete accuracy. Makes no attempt to define any concept 
Technical skill in communication                                                                                                                                                                                                                           
Outcomes
4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
Can define a derivative in terms of the limit of a difference quotient with perfect accuracy Can define a derivative in terms of the limit of a difference quotient with substantially complete accuracy Can define a derivative in terms of the limit of a difference quotient with incomplete accuracy Makes no attempt to define any concept 
Graphing functions using calculus                                                                                                                                                                                                                          
Outcomes
6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
Can utilize first and second derivatives to graph a function  with greater than 80% accuracy. Can utilize first and second derivatives to graph a function  with  80% accuracy. Can utilize first and second derivatives to graph a function  with less than  80% accuracy. Makes no attempt to graph any function 
Solving optimiztion and related rates problems                                                                                                                                                                                                             
Outcomes
7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
Can apply derivatives to solve 5 out of 5 problems of optimization or related rates Can apply derivatives to solve 4 out of 5 problems of optimization or related rates Can apply derivatives to solve 3 or fewer  out of 5 problems of optimization or related rates Makes no attempt to solve any optimization or related rates problem 

Copyright:

This material is protected by copyright and can not be reused without author permission.

Last Updated:9/20/2007 7:42:24 AM