Syllabus Entrance
Printer Friendly
Email Syllabus
Education Major Version

CH 407 Physical Chemistry I
Claycomb, Gregory D.


Mission Statement: Park University provides access to a quality higher education experience that prepares a diverse community of learners to think critically, communicate effectively, demonstrate a global perspective and engage in lifelong learning and service to others.

Vision Statement: Park University, a pioneering institution of higher learning since 1875, will provide leadership in quality, innovative education for a diversity of learners who will excel in their professional and personal service to the global community.

Course

CH 407 Physical Chemistry I

Semester

FA 2011 HO

Faculty

Gregory D. Claycomb, Ph.D.

Title

Assistant Professor

Degrees/Certificates

Ph.D. Kansas State University

Office Location

SC305

Office Hours

MTRF 1:00-3:00, TR 8:00-10:10

Daytime Phone

816-584-6338

E-Mail

gclaycomb@park.edu

Semester Dates

August 15th - Dec 9th

Class Days

M-W-F

Class Time

10:00 - 10:50

Prerequisites

CH108, PY206, MA222

Credit Hours

4


Textbook:
REQUIRED: Physical Chemistry 6th edition by Ira N. Levine

RECOMMENDED: Student Solution Manual to accompany Physical Chemistry 6th edition by Ira N. Levine

Textbooks can be purchased through the Parkville Bookstore

Additional Resources:

McAfee Memorial Library - Online information, links, electronic databases and the Online catalog. Contact the library for further assistance via email or at 800-270-4347.
Career Counseling - The Career Development Center (CDC) provides services for all stages of career development.  The mission of the CDC is to provide the career planning tools to ensure a lifetime of career success.
Park Helpdesk - If you have forgotten your OPEN ID or Password, or need assistance with your PirateMail account, please email helpdesk@park.edu or call 800-927-3024
Resources for Current Students - A great place to look for all kinds of information http://www.park.edu/Current/.


Course Description:
CH407 Physical Chemistry I: An introduction to modern theoretical chemistry with a primary emphasis in the area of thermodynamics.  The principles of thermodynamics will be applied to phase and chemical equilibria. Prerequisites: CH108 and PY206 and MA211. Corequisite: MA212. 3:3:4

Educational Philosophy:
The instructor's educational philosophy is one of interactiveness based on lectures, reading assignments, homework problems, quizzes and examinations, along with laboratory techniques and principles.  The instructor will engage each learner to encourage the lively exploration of ideas and issues relevant to the modern aspects of physical chemistry.

Learning Outcomes:
  Core Learning Outcomes

  1. Explain and apply the gas laws
  2. Describe the four Laws of Thermodynamics and apply them to chemical systems.
  3. Describe quantitatively state functions, heat capacity, and phase changes
  4. Calculate work, change in internal energy, enthalpy, entropy, Gibbs Free Energy and Helmholtz energy.
  5. Assess a process for spontaneity.
  6. Describe chemical equilibrium and apply this to solutions, condensed phases and multiple-Component Systems.
  7. Describe electrochemical systems using transport and conductance properties and use the Debye-Huckel Theory.
  8. Describe and apply Statistical Thermodynamics and the application of ensembles to partition functions, thermodynamic properties, monatomic gases, and State Functions.
  9. Keep a well-organized lab notebook and prepare a formal lab report.


Core Assessment:
Exams, papers, homework, lab notebook, formal lab reports

Link to Class Rubric

Class Assessment:

1.  Assigned Reading:  students will be expected to read the textbook, thoroughly and critically.
 
2.  Attendance:  Park University requires attendance to be taken for all scheduled classes. Park University regulations state that a student will be withdrawn after they have been absent for two weeks consecutively.
 
3.  Homework & Quizzes:  the best way to learn chemistry is to work problems. Multiple homework problems will be assigned from each chapter and turned in to be graded.  One of the problems will be graded at random to ensure that the assignments are being completed. 
 
4. Exams: it will be extremely difficult to pass this course without taking all 4 exams. Exams will contain questions that are designed to test problem solving skills. All of the pertinent equations and constants will be provided with each exam. You will be allowed to use scientific calculator. Make-up exams will be given only if the student contacts the instructor well in advance of the exam with a reasonable excuse (medical, death of an immediate family member).

Grading:
The final grade will be based on the quiz, exam and laboratory scores as follows:

                                    Exams (3)                      40%

                                    Homework/Quizzes       15%

                                    Laboratory                    25%

                                    Final Exam                    20%

                                    Total                            100%

The grading scale (A, B, C...) will reflect the class grade distribution.

Late Submission of Course Materials:
The instructor will not accept late assignments.

Classroom Rules of Conduct:

Cell phones must be turned off during class.

Course Topic/Dates/Assignments:

Chapters 1 through 13 will be on the agenda for this semester.

Academic Honesty:
Academic integrity is the foundation of the academic community. Because each student has the primary responsibility for being academically honest, students are advised to read and understand all sections of this policy relating to standards of conduct and academic life. Park University students and faculty members are encouraged to take advantage of the University resources available for learning about academic honesty (www.park.edu/current or http://www.park.edu/faculty/).from Park University 2011-2012 Undergraduate Catalog Page 93

Plagiarism:
Plagiarism involves the use of quotations without quotation marks, the use of quotations without indication of the source, the use of another's idea without acknowledging the source, the submission of a paper, laboratory report, project, or class assignment (any portion of such) prepared by another person, or incorrect paraphrasing. from Park University 2011-2012 Undergraduate Catalog Page 93

Attendance Policy:
Instructors are required to maintain attendance records and to report absences via the online attendance reporting system.

  1. The instructor may excuse absences for valid reasons, but missed work must be made up within the semester/term of enrollment.
  2. Work missed through unexcused absences must also be made up within the semester/term of enrollment, but unexcused absences may carry further penalties.
  3. In the event of two consecutive weeks of unexcused absences in a semester/term of enrollment, the student will be administratively withdrawn, resulting in a grade of "F".
  4. A "Contract for Incomplete" will not be issued to a student who has unexcused or excessive absences recorded for a course.
  5. Students receiving Military Tuition Assistance or Veterans Administration educational benefits must not exceed three unexcused absences in the semester/term of enrollment. Excessive absences will be reported to the appropriate agency and may result in a monetary penalty to the student.
  6. Report of a "F" grade (attendance or academic) resulting from excessive absence for those students who are receiving financial assistance from agencies not mentioned in item 5 above will be reported to the appropriate agency.

Park University 2011-2012 Undergraduate Catalog Page 96

Disability Guidelines:
Park University is committed to meeting the needs of all students that meet the criteria for special assistance. These guidelines are designed to supply directions to students concerning the information necessary to accomplish this goal. It is Park University's policy to comply fully with federal and state law, including Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, regarding students with disabilities. In the case of any inconsistency between these guidelines and federal and/or state law, the provisions of the law will apply. Additional information concerning Park University's policies and procedures related to disability can be found on the Park University web page: http://www.park.edu/disability .



Rubric

CompetencyExceeds Expectation (3)Meets Expectation (2)Does Not Meet Expectation (1)No Evidence (0)
Synthesis                                                                                                                                                                                                                                                  
Outcomes
2, 3, 4, 6, 7, 8, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
Select the appropriate gas law equation to answer question, compare to outcome using simple approximations

Propose a reasonable expression for the second viral coefficient

Design an experiment to enable one to construct t an appropriate heating/cooling curve and calculate the heat transferred



Assess a process for spontaneity



Fit and/or interpret CP or CV values for a specific temperature range to a polynomial

Ability to solve quantitative problems

Ability to derive complicated chemical relationships based on necessary assumptions

 
Select the appropriate gas law equation to answer question

Design an experiment to enable one to construct an appropriate heating/cooling curve and calculate the heat transferred



Assess a process for spontaneity



Fit and/or interpret CP or CV values for a specific temperature range to a given polynomial

Ability to solve quantitative problems

Ability to derive simple chemical relationships based on given assumptions

 
Recognize a gas law problem and use the ideal gas law to answer question

Construct a simple heating/cooling curve

Calculate heat transferred in phase transitions and upon heating



Assess a process for spontaneity



Interpret CP or CV values for a specific temperature range to a given polynomial

Ability to solve quantitative problems

(Ability to perform two of these)

 
Recognize a gas law problem



Recognize a heat transfer problem



Assess a process for spontaneity



Interpret  CP or CV values for a specific temperature range

Ability to solve quantitative problems

(Ability to perform one of these) 
Analysis                                                                                                                                                                                                                                                   
Outcomes
2, 3, 4, 6, 7, 8, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
Analyze a real thermodynamic problem; select the correct expression(s) to answer question.



Appraise assigned graphs, identify phase changes, and compare heat capacity for different phases.



Relate the concepts of phase equilibrium and chemical potential to ideal and real systems

Ability to analyze and solve quantitative problems

 
Analyze an ideal thermodynamic problem; select the correct expression(s) to answer question.



Appraise assigned graphs, identify phase changes, and compare heat capacity for different phases.



Relate the concepts of phase equilibrium and chemical potential to ideal systems

Ability to analyze and solve problems 
Analyze a straightforward thermodynamics problem



Relate the concepts of phase equilibrium and chemical potential to ideal systems (one of these)



Ability to solve quantitative problems 
Plug thermodynamic data in a given equation



Examine a phase equilibrium



Ability to solve a problem

 
Evaluation                                                                                                                                                                                                                                                 
Outcomes
2, 3, 4, 6, 7, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Evaluate a gas problem by selecting the appropriate gas law equation.  Either use or be able to compare this outcome to outcome using simple approximations.



Recognize and interpret phase changes in CV and CP versus T graphs.

Compute ?H and ?U for heating a pure substance when no phase change occurs or when one occurs.

Compute ?H and ?U for a reaction at 298K and other temperatures

Given the state of a system, determine which thermodynamic law is being asked to be used.  



All of these are to be met. 
Evaluate a gas problem by selecting the appropriate gas law equation.  

Recognize and interpret phase changes in CV and CP versus T graphs.

Compute ?H and ?U for heating a pure substance when no phase change occurs or when one occurs.

Compute ?H and ?U for a reaction at 298K

Given the state of a system, determine which thermodynamic law is being asked to be used.  

Three of these are to be met. 
Evaluate a gas problem using the ideal gas law equation.  

Recognize and interpret phase changes in CV and CP versus T graphs.

Compute ?H and ?U for heating a pure substance when no phase change occurs or when one occurs.

Compute ?H and ?U for a reaction at 298K

Given the state of a system, determine which thermodynamic law is being asked to be used.  

Two of these are to be met. 
Evaluate substance as a gas, liquid, or solid

Recognize and interpret phase changes in CV and CP versus T graphs.

Compute the ?H and ?U for heating a pure substance when no phase change occurs or when one occurs.

Compute ?H and ?U for a reaction at 298K

Given the state of a system, determine which thermodynamic law is being asked to be used.  

One of these is to be met. 
Terminology                                                                                                                                                                                                                                                
Outcomes
2, 3, 4, 6, 7, 8, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
Describe the four laws of thermodynamics

Describe state functions

Describe heat capacity

Describe Phase changes

Describe chemical Equilibrium

Describe electrochemical systems using transport and conductance properties

5-6 of these can be described

 
Describe the four laws of thermodynamics

Describe state functions

Describe heat capacity

Describe Phase changes

Describe chemical Equilibrium

Describe electrochemical systems using transport and conductance properties

4 of these can be described

 
Describe the four laws of thermodynamics

Describe state functions

Describe heat capacity

Describe Phase changes

Describe chemical Equilibrium

Describe electrochemical systems using transport and conductance properties

1-3 of these can be described 
Describe the four laws of thermodynamics

Describe state functions

Describe heat capacity

Describe Phase changes

Describe chemical Equilibrium

Describe electrochemical systems using transport and conductance properties

None of these can be described 
Concepts                                                                                                                                                                                                                                                   
Outcomes
2, 3, 4, 6, 7, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Calculate work

Calculate change in internal energy.

Calculate enthalpy

Calculate entropy.

Calculate Gibbs Free Energy

Calculate Helmholtz Energy

Calculate 6 of these.

 
Calculate work

Calculate change in internal energy.

Calculate enthalpy

Calculate entropy.

Calculate Gibbs Free Energy

Calculate Helmholtz Energy

Calculate 4-5 of these.

 
Calculate work

Calculate change in internal energy.

Calculate enthalpy

Calculate entropy.

Calculate Gibbs Free Energy

Calculate Helmholtz Energy

Calculate 3-1 of these.

 
Calculate work

Calculate change in internal energy.

Calculate enthalpy

Calculate entropy.

Calculate Gibbs Free Energy

Calculate Helmholtz Energy

Cannot Calculate any of these. 
Application                                                                                                                                                                                                                                                
Outcomes
2, 3, 4, 6, 7, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Apply by derivation thermodynamics to chemical equilibrium



Apply nonlinear curve fitting techniques.

Apply appropriate statistical measures

Master the manipulation of partial derivatives applied to thermodynamics

Apply the four laws of thermodynamics to a chemical system

Apply the gas laws to a gaseous system 
Apply thermodynamics to chemical equilibrium



Apply nonlinear curve fitting techniques.

Apply appropriate statistical measures

Master the manipulation of partial derivatives applied to thermodynamics

Apply two laws of thermodynamics to a chemical system

Apply the gas laws to a gaseous system





 
Apply given thermodynamic equations to chemical equilibrium



Apply nonlinear curve fitting techniques.

Apply two laws of thermodynamics to a chemical system

Apply the gas laws to a gaseous system

 
Plug thermodynamic data into given equations



Apply the gas laws to a gaseous system 
Whole Artifact                                                                                                                                                                                                                                             
Outcomes
2, 3, 4, 6, 7, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Given a chemical system, describe the chemical equilibrium, thermodynamics, and equilibrium in terms of transport and conductance.

Describe ensemble equilibrium

Describe, discuss, and interpret a given set of thermodynamic data.

Use and demonstrate an understanding of partial derivatives as a language

Use calculus and other higher mathematics in chemistry

 
Given a chemical system, describe the chemical equilibrium, thermodynamics, and equilibrium in terms of transport and conductance.

Describe ensemble equilibrium

Describe, discuss, and interpret a given set of thermodynamic data.

Use partial derivatives as a language

Use calculus and other higher mathematics in chemistry

 
Given a chemical system, describe the chemical equilibrium and thermodynamics.

Describe ensemble equilibrium

Interpret a given set of thermodynamic data.

Use simple partial differentiation as a language

Use calculus and other higher mathematics in chemistry 
Given a chemical system, describe the chemical equilibrium and thermodynamics.



Use calculus in chemistry

 
Component                                                                                                                                                                                                                                                  
Outcomes
2, 3, 4, 6, 7, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
Compute the equilibrium temperature when two materials are in contact

Describe the law of conservation of energy in terms of constant volume and constant pressure processes.

Determine the state function in terms of partition functions

Determine the function of a set of data and interpret to describe the meaning.

Determine non-standard potentials and equilibrium constants. 
Compute the equilibrium temperature when two materials are in contact

Describe the law of conservation of energy in terms of constant volume and constant pressure processes.

Determine the state function in terms of partition functions

Determine the function of a set of data and interpret to describe the meaning. 
Compute the equilibrium temperature when two materials are in contact

Describe the law of conservation of energy in terms of constant volume and constant pressure processes.

Determine the function of a set of data and interpret to describe the meaning. 
Compute the equilibrium temperature when two materials are in contact

Describe the law of conservation of energy 

Copyright:

This material is protected by copyright
                               and can not be reused without author permission.

Last Updated:8/4/2011 3:39:15 PM