Syllabus Entrance
Printer Friendly
Email Syllabus
Education Major Version

MA 120 Basic Concepts of Statistics
Smyre, James R.


Mission Statement: The mission of Park University, an entrepreneurial institution of learning, is to provide access to academic excellence, which will prepare learners to think critically, communicate effectively and engage in lifelong learning while serving a global community.

Vision Statement: Park University will be a renowned international leader in providing innovative educational opportunities for learners within the global society.

Course

MA 120 Basic Concepts of Statistics

Semester

U1UU 2011 CN

Faculty

Smyre, James R.

Title

Adjunct Faculty

Degrees/Certificates

B.S., M.Ed., E.M.E.M., M.Ed., I.S.D.S., Ed.S.
Certified SC mathematics teacher
Certified SC guidance counselor (secondary)

Office Location

Building 221, CAFB

Office Hours

By appointment

Daytime Phone

843-769-7148

Other Phone

843-746-5125

E-Mail

james.smyre@park.edu

james.smyre@strayer.edu

Web Page

http://www.park.edu

Semester Dates

June 6 - July 31 2011

Class Days

Mon-Wed

Class Time

11am to 130pm  Military time:  1100 to 1330

Prerequisites

Placement test or algebra prerequisite course

Credit Hours

3


Textbook:

Title:  Elementary Statistics, 11th ed.
Author:  Triola, Mario F.
Pub:  Addison-Wesley:  c. 2010

Textbooks can be purchased through the MBS bookstore

Textbooks can be purchased through the Parkville Bookstore

Additional Resources:

Student Solutions Manual, Loyer Milton, Addison-Wesley Publishers
TI-83/84 Operator's Manual, Texas Instruments
SPSS Student Laboratory Manual and Workbook, James J. Ball, Addison Wesley Publishers
 

McAfee Memorial Library - Online information, links, electronic databases and the Online catalog. Contact the library for further assistance via email or at 800-270-4347.
Career Counseling - The Career Development Center (CDC) provides services for all stages of career development.  The mission of the CDC is to provide the career planning tools to ensure a lifetime of career success.
Park Helpdesk - If you have forgotten your OPEN ID or Password, or need assistance with your PirateMail account, please email helpdesk@park.edu or call 800-927-3024
Resources for Current Students - A great place to look for all kinds of information http://www.park.edu/Current/.

http://www.coursecompass.com
http://www.purplemath.com
http://www.aw.com/triola

Course Description:
MA120 Basic Concepts of Statistics (GE): A development of certain basic concepts in probability and statistics that is pertinent to most disciplines. Topics include: probability models, parameters, statistics and sampling procedures, hypothesis testing, correlation and regression.  For more advanced and interested students, extra credit can be obtained via further independent and instructor-guided study of Chi-square and one-way analysis of variance (ANOVA).  3:0:3

Educational Philosophy:

Individuals approach math and math-related course study differently.  Some are "problem cranks" who memorize algorithmic steps to approach distinct types of problems while utilizing a bank of mnemonics;  others develop a cognitive sense or a set of problem-solving skills and creatively use them to approach math, inter alia.  The "bottom line" is that the object of a course such as this is to teach the student how to think for themselves and recognize different ways of approaching decisions in academe, employment, family and social interactions (i.e., all phases and aspects of life).  This instructor will embrace these and other ways of enhancing the pedagogical dynamic.

Learning Outcomes:
  Core Learning Outcomes

  1. Compute descriptive statistics for raw data as well as grouped data.
  2. Determine appropriate features of a frequency distribution.
  3. Apply Chebyshev's Theorem.
  4. Distinguish between and provide relevant descriptions of a sample and a population.
  5. Apply the rules of combinatorics.
  6. Differentiate between classical and frequency approaches to probability.
  7. Apply set-theoretic ideas to events.
  8. Apply basic rules of probability.
  9. Apply the concepts of specific discrete random variables and probability distributions.
  10. Compute probabilities of a normal distribution.
  11. Compute confidence intervals of means and percentages.
  12. Perform hypothesis tests involving one population.
  13. Compute regression and correlation of Bi-variate data.


  Instructor Learning Outcomes
  1. Describe the differences between various types of data.
  2. Apply various descriptive graphical techniques.
  3. Calculate measures of central tendency and dispersion.
  4. Discuss the fundamentals of probability and apply addition rule, multiplication rule and counting rule.
  5. Perform regression analysis and compute correlations using paired data.
  6. Describe the characteristics of discrete and continuous probability distributions.
  7. Calculate the standardized values of a normal distribution.
  8. Utilize the 5-step hypothesis testing procedure.
  9. Calculate estimates of population parameters using sample data.
  10. Discuss application of course content in the context of a professional setting.
  11. Implement technology tools.
  12. As an option, conduct one-way ANOVA and Chi-square tests.
  13. Use technology and information resources to research issues in statistics.
Core Assessment:

Description of MA 120 Core Assessment


 


One problem with multiple parts for each numbered item, except for item #3, which contains four separate problems.


 


1.         Compute the mean, median, mode, and standard deviation for a sample of 8 to 12 data.


 


2.         Compute the mean and standard deviation of a grouped frequency distribution with 4 classes.


 


3.         Compute the probability of four problems from among these kinds or combinations there of:


            a.         the probability of an event based upon a two-dimensional table;


            b.         the probability of an event that involves using the addition rule;


            c.         the probability of an event that involves conditional probability;


            d.         the probability of an event that involves the use of independence of events;


            e.         the probability of an event based upon permutations and/or combinations;


            f.          the probability of an event using the multiplication rule; or


            g.         the probability of an event found by finding the probability of the complementary event.


 


4.         Compute probabilities associated with a binomial random variable associated with a practical situation. 
  
5.         Compute probabilities associated with either a standard normal probability distribution or with a non-standard normal probability distribution.

6.         Compute and interpret a confidence interval for a mean and/ or for a proportion.

Link to Class Rubric

Class Assessment:
Class team discussions and problem solving, attendance, being on time, not leaving early, inter alia count toward class participation.  Homework, quizzes, and exams and special projects are also assessed traditionally.

Grading:

Quizzes, projects and homework: 25 percent
Midterm exam:  25 percent
Class participation:  25 percent   
Final exam:  25 percent

Late Submission of Course Materials:
It is recognized when affiliated with the military, that special ops, assignments, TDYs and emergent orders do affect class study.  Each late submittal will be given every due and analyzed on a case-by-case basis to the benefit of the student.

Classroom Rules of Conduct:
Each person is expected to conduct themselves with pride and respect in accordance with military protocol and Park University.  Refer to the UCMJ and Park University student handbook respectively as needed.

Course Topic/Dates/Assignments:

Meeting one June 06:
Chapter 1, Topics:  Introduction to statistics, levels of measurement, symbols and philosophy of statistics
Homework:  selected odd problems
 
Meeting two June 08:
Chapter 2,  Topics:  Histograms, ogives, frequency distributions
Homework:  selected odd problems
 
Meeting three June 13:
Chapter 3, Topics:  Measures of central tendency and dispersion ( individual discrete and grouped data)
Homework:  selected odd problems
 
Meeting four June 15:
Quiz 1
Chapter 3, continued topics:  Begin dot plots, box and whisker plots, pareto charts, stem and leaf, skewness
Homework:  selected odd problems
 
Meeting five June 20:
Go over quiz 1
Chapter 4, Topics:  Probability, counting rules, independence/dependence, disjoint and condtional probability
Homework:  selected odd problems
 
Meeting six June 22:
Chapter 5, Topics:  Discrete, binomial, and Poisson distributions
Homework:  selected odd problems
 
Meeting seven June 27:
Chapter 6, Topics:  Normal distribution, central limit theorem, normal approximation to binomial, sampling estimators
Homework:  selected odd problems
 
Meeting eight June 29:
Midterm exam
 
Meeting nine July 04:
National Holiday; no class scheduled
 
Meeting ten July 06:
Return and go over midterm exam
Chapters 7 & 8, Topics:  Estimates, sample sizes, confidence intervals; Hypothesis testing of large and small samples
Homework:  selected odd problems
 
Meeting eleven July 11:
Chapter 8, Continued topics:  Hypothesis testing, proportions and review
Homework:  selected odd problem
 
Meeting twelve July 13:
Quiz 2
Chapter 10, Topics:  Correlation and regression
Homework:  selected odd problems
 
Meeting thirteen July 18:
Go over quiz 2
Chapter 10, Continued topics:  Correlation and regression
Homework:  selected odd problems
 
Meeting fourteen July 20:
Chapter 13:  Quiz 3
Homework:  practice final exam given
 
Meeting fifteen July 25:
Go over quiz 3
Student-directed question and answer review format for final exam-- designed to target specific individual weak points; also for those advanced enough for the optional independent study for extra credit:  ANOVA (one-way) and Chi-square.
Homework:  selected review topics as needed
 
Meeting sixteen July 27:
Final exam administered
 
 
 
 
 

Academic Honesty:
Academic integrity is the foundation of the academic community. Because each student has the primary responsibility for being academically honest, students are advised to read and understand all sections of this policy relating to standards of conduct and academic life. Park University students and faculty members are encouraged to take advantage of the University resources available for learning about academic honesty (www.park.edu/current or http://www.park.edu/faculty/).from Park University 2010-2011 Undergraduate Catalog Page 92

Plagiarism:
Plagiarism involves the use of quotations without quotation marks, the use of quotations without indication of the source, the use of another's idea without acknowledging the source, the submission of a paper, laboratory report, project, or class assignment (any portion of such) prepared by another person, or incorrect paraphrasing. from Park University 2010-2011 Undergraduate Catalog Page 92-93

Attendance Policy:
Instructors are required to maintain attendance records and to report absences via the online attendance reporting system.

  1. The instructor may excuse absences for valid reasons, but missed work must be made up within the semester/term of enrollment.
  2. Work missed through unexcused absences must also be made up within the semester/term of enrollment, but unexcused absences may carry further penalties.
  3. In the event of two consecutive weeks of unexcused absences in a semester/term of enrollment, the student will be administratively withdrawn, resulting in a grade of "F".
  4. A "Contract for Incomplete" will not be issued to a student who has unexcused or excessive absences recorded for a course.
  5. Students receiving Military Tuition Assistance or Veterans Administration educational benefits must not exceed three unexcused absences in the semester/term of enrollment. Excessive absences will be reported to the appropriate agency and may result in a monetary penalty to the student.
  6. Report of a "F" grade (attendance or academic) resulting from excessive absence for those students who are receiving financial assistance from agencies not mentioned in item 5 above will be reported to the appropriate agency.

Park University 2010-2011 Undergraduate Catalog Page 95-96

Disability Guidelines:
Park University is committed to meeting the needs of all students that meet the criteria for special assistance. These guidelines are designed to supply directions to students concerning the information necessary to accomplish this goal. It is Park University's policy to comply fully with federal and state law, including Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, regarding students with disabilities. In the case of any inconsistency between these guidelines and federal and/or state law, the provisions of the law will apply. Additional information concerning Park University's policies and procedures related to disability can be found on the Park University web page: http://www.park.edu/disability .

Additional Information:
It is hoped that this will be one of the better math and/or statistics courses the students have taken thus far.  Upon successful completion of this course, the student should be prepared for additional similar courses and enlightened with a functional, operative empathy for problem solving in everyday life.



Rubric

CompetencyExceeds Expectation (3)Meets Expectation (2)Does Not Meet Expectation (1)No Evidence (0)
Evaluation                                                                                                                                                                                                                                                 
Outcomes
10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
Can perform and interpret a hypothesis test with 100% accuracy. Can perform and interpret a hypothesis test with at least 80% accuracy. Can perform and interpret a hypothesis test with less than 80% accuracy. Makes no attempt to perform a test of hypothesis. 
Synthesis                                                                                                                                                                                                                                                  
Outcomes
10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
Can compute and interpret a confidence interval for a sample mean for small and large samples, and for a proportion with 100% accuracy. Can compute and interpret a confidence interval for a sample mean for small and large samples, and for a proportion with at least 80% accuracy. Can compute and interpret a confidence interval for a sample mean for small and large samples, and for a proportion with less than 80%  accuracy. Makes no attempt to compute or interpret a confidence interval. 
Analysis                                                                                                                                                                                                                                                   
Outcomes
10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
Can apply the normal distribution, Central limit theorem, and binomial distribution to practical problems with 100% accuracy. Can apply the normal distribution, Central limit theorem, and binomial distribution to practical problems with at least 80% accuracy. Can apply the normal distribution, Central limit theorem, and binomial distribution to practical problems with less than 80% accuracy. Makes no attempt to apply the normal distribution, Central Limit Theorem, or binomial distribution. 
Terminology                                                                                                                                                                                                                                                
Outcomes
4,5,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
Can explain event, simple event, mutually exclusive events, independent events, discrete random variable, continuous random variable, sample,  and population with 100% accuracy. Can explain event, simple event, mutually exclusive events, independent events, discrete random variable, continuous random variable, sample,  and population with at least 80% accuracy. Can explain event, simple event, mutually exclusive events, independent events, discrete random variable, continuous random variable, sample,  and population with less than 80% accuracy. Makes no attempt to explain any of the terms listed. 
Concepts                                                                                                                                                                                                                                                   
Outcomes
1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
Can explain mean, median, mode, standard deviation, simple probability, and measures of location with 100% accuracy. Can explain mean, median, mode, standard deviation, simple probability, and measures of location with at least 80% accuracy. Can explain mean, median, mode, standard deviation, simple probability, and measures of location with less than 80%  accuracy. Makes no attempt to define any concept. 
Application                                                                                                                                                                                                                                                
Outcomes
1,2,3,8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
Compute probabilities using addition multiplication, and complement rules and conditional probabilities. Compute statistical quantities for raw and grouped data. Compute probabilities using combinatorics, discrete random variables, and continuous random variables. All must be done with 100% accuracy. Compute probabilities using addition multiplication, and complement rules and conditional probabilities. Compute statistical quantities for raw and grouped data. Compute probabilities using combinatorics, discrete random variables, and continuous random variables. All must be done with at least 80% accuracy. Compute probabilities using addition multiplication, and complement rules and conditional probabilities. Compute statistical quantities for raw and grouped data. Compute probabilities using combinatorics, discrete random variables, and continuous random variables. All are done with less than 80% accuracy. Makes no attempt to compute any of the probabilities or statistics listed. 
Whole Artifact                                                                                                                                                                                                                                             
Outcomes
7,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
Can apply the concepts of probability and statistics to real-world problems in other disciplines with 100 % accuracy. Can apply the concepts of probability and statistics to real-world problems in other disciplines with at least 80 % accuracy. Can apply the concepts of probability and statistics to real-world problems in other disciplines with less than 80% accuracy. Makes no attempt to apply the concepts to real-world problems. 
Components                                                                                                                                                                                                                                                 
Outcomes
1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
Can use a calculator or other computing device to compute statistics with 100% accuracy. Can use a calculator or other computing device to compute statistics with at least 80% accuracy. Can use a calculator or other computing device to compute statistics with less 80% accuracy. Makes no attempt to use any computing device to compute statistics. 

Copyright:

This material is protected by copyright
                               and can not be reused without author permission.

Last Updated:5/3/2011 8:54:28 AM